
 Meeting 104
// Reverse Engineering Basics //

If You’re New!
● Join our Slack: cyberatuc.slack.com
● SIGN IN! (Slackbot will post the link in slack)
● Feel free to get involved with one of our committees:

Content Finance Public Affairs Outreach Recruitment Lab

http://cyberatuc.slack.com

Announcements / Upcoming Events

● We are currently 5th place in NSA Codebreaker
● 10/30: Rockwell Automation Visit / Demo
● 11/6 - Club Elections

● An overview of Industrial Control Systems (ICS) and how they relate to cybersecurity
● History of ICS Security (Stuxnet, Ukrainian Power Grid Attacks, Trisys, etc.)
● Challenges in ICS security attacks
● Potentially a DEMO of how security issues in ICS can be exploited to cause physical damage

Bring Resumes and Questions!

@ +

Rockwell Automation Guest Speaker

Wednesday, October 30th - Rhodes 850D Patrick Feeley - Senior Embedded Software Engineer

Reach out to @Michael Sengelmann on cyberatuc.slack.com if you have any questions

Weekly News

NordVPN Breach
● Insecure remote management

system account

● Attacker could spin up their own
server

● 1 of 3000 servers

● Would need the client to ignore
the expired key

https://nordvpn.com/blog/official-response-datacenter-breach

https://nordvpn.com/blog/official-response-datacenter-breach/

Reverse Engineering Basics

Agenda
● I wasn’t here last week!
● What is REeee
● Why REeee
● REeee Tools
● Binary Compilation Process
● CTF Challenge from Battelle

○ Goats walkthrough w/ ghidra

I wasn’t here last week!
● Shame on you
● Jason Armstrong from the NSA came

and gave us an incredible talk on the
history of Encryption and even
brought an original enigma machine
for us to play with

What is Reverse Engineering?
- Process of analyzing software to figure out how it works, how it was written,

and more
- Typically done with a combination of debuggers, disassemblers, and

decompilers
- Static analysis

- Inspect the program without running it
- View code, draw conclusions

- Dynamic analysis
- Inspect the program as it runs

Why Reverse Engineer Things?
- Figure out how things work
- Change how things work by extending them
- Find vulnerabilities

- - - Reverse engineering is used to:

- Make exploits
- Hack video games
- Win CTF’s (like CodeBreaker)

Reverse Engineering Tools

Binary Tools (ELF / PE / MachO) Android / Java Tools

GHIDRA
diStorm3
IDA
edb-debugger
OllyDbg
Valgrind
YARA
Strings
R2 / Cutter
Binary Ninja

GHIDRA
apktool
dex2jar
jad
javasnoop
jd-gui
smali

Compilation Process - Executables
● Source code is written in language of

choice (here in C)
● Code compiles to assembly / interpreter

code
● Native Code (C++, C, Rust) continue being

compiled to the actual numbers that the
processor runs

● On some scripting languages,
compilation may not be done at all as the
script is interpreted by the language
binary

Compilation Process - Dependencies
● Static Linking

○ Dependencies are included in your output binary (.LIB/.O)
○ Pros: much more portable, single output program
○ Con: larger output binary size

● Dynamic Linking
○ Dependencies are looked up by the OS when the program is run (.DLL/.SO)
○ Pro: smaller individual binary size, multiple programs can share deps
○ Cons: Dependencies might not be on machine, more files to track

● Run-Time Linking
○ Like dynamic linking except the program finds the dependencies it wants to load manually

and then pulls them into memory
○ Pro: Reverse engineers take slightly longer to see your dependencies
○ Con: Almost exclusively used by malware, so if you’re drying to make a video game hard to

hack you’ll probably be blocked by antivirus from even installing

Compilation Process - Strings
● Typically the strings in your

application get shoved into a
special section of the binary in
ASCII or UTF-16 format

● All modern Windows program
include “This program cannot be
run in DOS mode” right at the
beginning as well

● We can scan a binary for plain text
strings in a matter of nanoseconds

