
Cyber@UC Meeting 92
Senior Designs and MBE crackmes

If You’re New!

● Join our Slack: cyberatuc.slack.com
● Check out our website: cyberatuc.org
● Organization Resources on our Wiki: wiki.cyberatuc.org
● SIGN IN! (Slackbot will post the link in #general every Wed@6:30)
● Feel free to get involved with one of our committees:

Content Finance Public Affairs Outreach Recruitment Lab
● Ongoing work in our research lab!

https://cyberatuc.slack.com
https://www.cyberatuc.org
http://wiki.cyberatuc.org

Announcements

● Organization planning meeting Sunday,
all are welcome to attend

● New Lab Head, Aaron Boyd
● Outdoor event, 27th near dabney
● Shirts and Hoodies, 25$ and 35$

respectively
● Battelle visit this Saturday

○ Pay attention to the slack for
carpooling/details

April 20th
CTF + MMORPG
11AM - 4PM
COLUMBUS, OH

The Topics Today Go Something Exactly Like
This

- Cyber@UC SOC
- Install GHIDRA if you haven’t already
- Walkthroughs and analysis for the first 6 MBE problems

Cyber@UC SOC

Here we go...

SIG ALL IN ONE

Here We Go… But Better

Install GHIDRA

From their website:

ghidra-sre.org

From our gitlab:

gitlab.com/cyberatuc/ghidra

GHIDRA requires having JDK 11 as well.

Get the MBE problems

- https://github.com/RPISEC/MBE
- Their github has a link called “course website”
- Find “challenges.zip” from the course website
- Unzip and open in GHIDRA

https://github.com/RPISEC/MBE

crackme0x00a

Scanf (user input) a string and compare
it to the bytes at 0x0804a024:

67 30 30 64 4A 30 42 21 = g00dJ0B!

crackme0x01

python3 -c "print(int('149a',base=16))" | ./crackme0x01

Scanf user input into local_8 as a decimal
Compare local_8 to 0x149a
We can use python to pipe our input as decimal in

crackme0x03

Similar scanf and comparison although now we have a
custom function test.

Going into test shows we pass it two parameters and do an
simple comparison then deobfuscate a corresponding result
string through the shift function.

python3 -c "print(int('52b24',base=16))" | ./crackme0x03

rot3

crackmex04 Similar to the last one, we have
a custom check function to
validate the password.

We have a counter that increments
from the characters in our input
as integers, then if we reach 0xf
(16) before the end of the
string, our password is valid

crackmex05
1001 = 9
0001 &
0001 = 1

1000 = 8
0001 &
0000 = 0

